Vedi metadata

Dati del DOI

10.3280/SPE2023-002002

Articolo

Cite as

Dati della rivista
Dati del fascicolo
Dati dell'articolo
Elenco citazioni del 10.3280/SPE2023-002002

Citazione non strutturata

Abdi H., Williams L.J. (2010). Principal Component Analysis, Wiley Int. Rev. Comput. Stat., 2: 433-459.

https://doi.org/10.1002/wics.101


Citazione non strutturata

Ahn Y., Kim D. (2021). Emotional trading in the cryptocurrency market, Financ. Res. Lett., 42, 101912.

https://doi.org/10.1016/j.frl.2020.101912


Citazione non strutturata

Akyildirim E., Aysan A.F., Cepni O., Darendeli S.P.C. (2021). Do investor sentiments drive cryptocurrency prices?, Econ. Lett. 206, 109980.

https://doi.org/10.1016/j.econlet.2021.109980


Citazione non strutturata

Atkinson J., Escudero A. (2022). Evolutionary natural-language coreference resolution for sentiment analysis, Intern. Journ, Inform. Mang. Data Ins., 2, 100115.

https://doi.org/10.1016/j.jjimei.2022.100115


Citazione non strutturata

Ba C.T., Zignani M., Gaito S. (2022). The role of cryptocurrency in the dynamics of blockchain-based social networks: The case of Steemit, PLoS ONE, 17(6), e0267612.

https://doi.org/10.1371/journal.pone.0267612


Citazione non strutturata

Bariviera A.F., Merediz-Solà I. (2021). Where do we stand in cryptocurrencies economic Research? A survey based on hybrid analysis, J. Econ. Survey, 35(2): 377-407.

https://doi.org/10.1111/joes.12412


Citazione non strutturata

Beh E.J., Lombardo R. (2014). Correspondence Analysis. Theory, Practice and New Strategies. Wiley, Chichester.

https://doi.org/10.1002/9781118762875


Citazione non strutturata

Bhatt A., Joshipura M., Joshipura N. (2022). Decoding the trinity of Fintech, digitalization and financial services: An integrated bibliometric analysis and thematic literature review approach, Cog. Econ. Finance, 10, 2114160.

https://doi.org/10.1080/23322039.2022.2114160


Citazione non strutturata

Bouteska A., Mefteh-Wali S., Dang T. (2022). Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic, Techn. Forec. Soc. Change, 184, 121999.

https://doi.org/10.1016/j.techfore.2022.121999


Citazione non strutturata

Chen M.A., Wu D., Yang B. (2019). How Valuable Is FinTech Innovation?. Rev. Financ. Stud., 32(5).

https://doi.org/10.1093/rfs/hhy130


Citazione non strutturata

Coulter K.A. (2022). The impact of news media on Bitcoin prices: modelling data driven discourses in the crypto-economy with natural language processing, Royal Soc. Open Sci., 9, 220276.

https://doi.org/10.1098/rsos.220276


Citazione non strutturata

Dadar P. (2018). Decyphering cryptocurrencies: Sentiments and prices. SCSUG Paper.


Citazione non strutturata

Egami N., Fong C.J., Grimmer J., Roberts M.E., Stewart B.M. (2018). How to Make Causal Inferences Using Texts, arXiv, 1802.02163v1.


Citazione non strutturata

Elsayed A.H., Gozgor G., Yarovaya L. (2022). Volatility and return connectedness of cryptocurrency, gold, and uncertainty: Evidence from the cryptocurrency uncertainty indices, Financ Res. Lett., 47, 102732.

https://doi.org/10.1016/j.frl.2022.102732


Citazione non strutturata

Garcia‑Corral F.J., Cordero‑Garcia J.A., de Pablo‑Valenciano J., Uribe‑Toril J. (2022). A bibliometric review of cryptocurrencies: how have they grown?, Financ. Innov., 8(2).

https://doi.org/10.1186/s40854-021-00306-5


Citazione non strutturata

García-Medina A., Hernández J.B. (2020). Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of Turbulence, Entropy, 22(7), 760.

https://doi.org/10.3390/e22070760


Citazione non strutturata

Garriga M., Dalla Palma S., Arias M., De Renzis A., Pareschi R., Tamburri D.A (2020). Blockchain and cryptocurrencies: A classification and comparison of architecture drivers, Concurrency and Computation, 33(8).

https://doi.org/10.1002/cpe.5992


Citazione non strutturata

Granger C.W.J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica, 37, 424-438.

https://doi.org/10.2307/1912791


Citazione non strutturata

Greenacre M. (2007). Correspondence Analysis in Practice, Chapman & Hall, Boca Raton.

https://doi.org/10.1201/9781420011234


Citazione non strutturata

Grimmer J., Stewart B. (2013). Text ad Data: The promise and Pitfalls of Automatic Content Analysis Methods for Political Texts, Political Analysis, 21: 267-97.

https://doi.org/10.1093/pan/mps028


Citazione non strutturata

Guerrero Cusumano J.L. (2017). A Detection Mechanism with Text Mining Cross Correlation Approach, IEEE International Conference on Big Data Boston.


Citazione non strutturata

Guo X., Donev P. (2020). Bibliometrics and Network Analysis of Cryptocurrency Research, J Syst Sci Complex, 33: 1933-1958.

https://doi.org/10.1007/s11424-020-9094-z


Citazione non strutturata

Gupta A., Dengre V., Kheruwala H:A., Shah M. (2020). Comprehensive review of text‑mining applications in finance, Financial Innovation, 6: 39.

https://doi.org/10.1186/s40854-020-00205-1


Citazione non strutturata

Hamilton J.D. (1994). Time Series Analysis, Princeton University Press, Princeton. Hassani H., Huang X., & Ghodsi M. (2018). Big Data and Causality. Annals Data Science, 5: 133-156.

https://doi.org/10.1007/s40745-017-0122-3


Citazione non strutturata

Hill T., Lewicki P. (2006). Statistics. Methods and Applications, StatSoft, Tulsa. Hoover K.D. (2001). Causality in Macroeconomics, Cambridge University Press, Cambridge.

https://doi.org/10.1016/B978-0-323-03707-5.50024-3


Citazione non strutturata

Jaquart P., Kopke S., Weinhardt C. (2022). Machine learning for cryptocurrency market prediction and trading, J. Financ. Data Sci., 8: 331-352.

https://doi.org/10.1016/j.jfds.2022.12.001


Citazione non strutturata

Kim Y.B., Lee J., Park N., Choo J., Kim J-H., Kim (2017). When Bitcoin encounters information in an online forum: Using text mining to analyse user opinions and predict value fluctuation. PLoS ONE, 12(5), e0177630.

https://doi.org/10.1371/journal.pone.0177630


Citazione non strutturata

Kraaijeveld O., De Smedt J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices, J. Int. Financ. Mark. Inst. Money, 65, 101188 v.

https://doi.org/10.1016/j.intfin.2020.101188


Citazione non strutturata

Kufenko V., Geiger N. (2016). Business cycles in the economy and in economics: an econometric analysis, Scientometrics, 107: 43-69.

https://doi.org/10.1007/s11192-016-1866-9


Citazione non strutturata

Kwapień J., Wątorek M., Drożdż S. (2021). Cryptocurrency Market Consolidation in 2020-2021, Entropy, 23(12), 1674.

https://doi.org/10.3390/e23121674


Citazione non strutturata

Laskowski M., Kim H.M. (2016). Rapid Prototyping of a Text Mining Application for Cryptocurrency Market Intelligence, arXiv, 1611.00315v1.

https://doi.org/10.2139/ssrn.2798486