Titolo completo
PNEI REVIEW
Editore
FrancoAngeli
ISSN
2532-6147 (Rivista Stampata)
2532-2826 (Rivista Online)
Numero del fascicolo
1
Designazione del fascicolo
1
Data del fascicolo
2022
Titolo completo
La funzione vagale: un link fra psiche, cervello e corpo
Di (autore)
Prima Pagina
20
Ultima Pagina
37
Lingua del testo
Italiano
Data di publicazione
2022/04
Copyright
2022 FrancoAngeli srl
Introduzione o prefazione
Il nervo vago influenza i nostri stati psicologici e la flessibilità delle risposte adattative alle sollecitazioni ambientali e modula la regolazione dinamica dei sistemi biologici coinvolti nell'allostasi. L'output vagale è modulato dall'attività coordinata di strutture cerebrali fra loro interconnesse a formare una rete gerarchica multi-livello, il central autonomic network (CAN), che realizza l'integrazione neuroviscerale tramite anelli multipli di retroazione iterativa centro-periferia (cervello-corpo) operanti a vari livelli di complessità nel nevrasse; ogni livello gerarchico della rete elabora e integra nuovi tipi di informazione rispetto al livello precedente, e contribuisce in maniera più flessibile e contesto-specifica alla modulazione del tono vagale. L'output vagale si associa ad una varietà di processi neuropsichici, come gli stati affettivi, la regolazione delle emozioni, le funzioni esecutive. La compromissione della funzione vagale, associata a bassi indici di variabilità della frequenza cardiaca (HRV), si accompagna a rigidità delle risposte psicofisiologiche, disregolazione dei processi allostatici e all'incremento del rischio per patologie mediche e neuropsichiatriche.
Citazione non strutturata
Albinet C.T., Boucard G., Bouquet C.A., & Audiffren M. (2010). Increased heart rate variability and executive performance
after aerobic training in the elderly. European Journal of Applied Physiology, 109(4), 617–624.
https://doi.org/10.1007/s00421-010-1393-y
Citazione non strutturata
Benichou T., Pereira B., Mermillod M., Tauveron I., Pfabigan D., Maqdasy S., & Dutheil F. (2018). Heart rate variability in
type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One, 13(4), e0195166.
https://doi.org/10.1371/journal.pone.0195166
Citazione non strutturata
Chalmers J.A., Quintana D.S., Abbott M.J., & Kemp A.H. (2014). Anxiety Disorders are Associated with Reduced Heart Rate Variability:
A Meta-Analysis. Frontiers in Psychiatry, 5, 80.
https://doi.org/10.3389/fpsyt.2014.00080
Citazione non strutturata
Chen W.G., Schloesser D., Arensdorf A.M., Simmons J.M., Cui C., Valentino R., Gnadt J.W., Nielsen L., Hillaire-Clarke C.S.,
Spruance V., Horowitz T.S., Vallejo Y.F., & Langevin H.M. (2021). The Emerging Science of Interoception: Sensing, Integrating,
Interpreting, and Regulating Signals within the Self. Trends in neurosciences, 44(1), 3–16.
https://doi.org/10.1016/j.tins.2020.10.007
Citazione non strutturata
Clamor A., Lincoln T.M., Thayer J.F., & Koenig J. (2016). Resting vagal activity in schizophrenia: meta-analysis of heart
rate variability as a potential endophenotype. British Journal of Psychiatry, 208(1), 9–16.
https://doi.org/10.1192/bjp.bp.114.160762
Citazione non strutturata
Farmer A.D., Strzelczyk A., Finisguerra A., Gourine A.V., Gharabaghi A., Hasan A., Burger A.M., Jaramillo A.M., Mertens A.,
Majid A., Verkuil B., Badran B.W., Ventura-Bort C., Gaul C., Beste C., Warren C.M., Quintana D.S., Hämmerer D., Freri E.,
Frangos E., Tobaldini E., Kaniusas E., Rosenow F., Capone F., Panetsos F., Ackland G.L., Kaithwas G., O’Leary G.H., Genheimer
H., Jacobs H.I.L., Van Diest I., Schoenen J., Redgrave J., Fang J., Deuchars J., Széles J.C., Thayer J.F., More K., Vonck
K., Steenbergen L., Vianna L.C., McTeague L.M., Ludwig M., Veldhuizen M.G., De Couck M., Casazza M., Keute M., Bikson M.,
Andreatta M., D’Agostini M., Weymar M., Betts M., Prigge M., Kaess M., Roden M., Thai M., Schuster N.M., Montano, N., Hansen
N., Kroemer N.B., Rong P., Fischer R., Howland R.H., Sclocco R., Sellaro R., Garcia R.G., Bauer S., Gancheva S., Stavrakis
S., Kampusch S., Deuchars S.A., Wehner S., Laborde S., Usichenko T., Polak T., Zaehle T., Borges U., Teckentrup V., Jandackova
V.K., Napadow V., & Koenig J. (2020). International Consensus Based Review and Recommendations for Minimum Reporting Standards
in Research on Transcutaneous Vagus Nerve Stimulation (Version 2020). Frontiers in Human Neuroscience, 14, 568051.
https://doi.org/10.3389/fnhum.2020.568051
Citazione non strutturata
Citazione non strutturata
Geisler F.C., Kubiak T., Siewert K., & Weber H. (2013). Cardiac vagal tone is associated with social engagement and self-regulation.
Biological Psychology, 93(2), 279–286.
https://doi.org/10.1016/j.biopsycho.2013.02.013
Citazione non strutturata
Geisler F.C., Vennewald N., Kubiak T., & Weber H.J.P. (2010). The impact of heart rate variability on subjective well-being
is mediated by emotion regulation. Personality and Individual Differences, 49(7), 723–728.
https://doi.org/10.1016/j.paid.2010.06.015
Citazione non strutturata
Hillebrand S., Gast K.B., de Mutsert R., Swenne C.A., Jukema J.W., Middeldorp S., Rosendaal F.R., & Dekkers O.M. (2013). Heart
rate variability and first cardiovascular event in populations without known cardiovascular disease: metaanalysis and dose-response
meta-regression. Europace, 15(5), 742–749.
https://doi.org/10.1093/europace/eus341
Citazione non strutturata
Jarczok M.N., Kleber M.E., Koenig J., Loerbroks A., Herr R.M., Hoffmann K., Fischer J.E., Benyamini Y., & Thayer J.F. (2015).
Investigating the associations of self-rated health: heart rate variability is more strongly associated than inflammatory
and other frequently used biomarkers in a cross sectional occupational sample. PLoS One, 10(2), e0117196.
https://doi.org/10.1371/journal.pone.0117196
Citazione non strutturata
Jarczok M.N., Koenig J., Mauss D., Fischer J.E., & Thayer J.F. (2014). Lower heart rate variability predicts increased level
of C-reactive protein 4 years later in healthy, nonsmoking adults. Journal of Internal Medicine, 276(6), 667–671.
https://doi.org/10.1111/joim.12295
Citazione non strutturata
Kemp A.H., Brunoni A.R., Santos I.S., Nunes M.A., Dantas E.M., Carvalho de Figueiredo R., Pereira A.C., Ribeiro A.L., Mill
J.G., Andreao R.V., Thayer J.F., Bensenor I.M., & Lotufo P.A. (2014). Effects of depression, anxiety, comorbidity, and antidepressants
on resting-state heart rate and its variability: an ELSA-Brasil cohort baseline study. American Journal of Psychiatry, 171(12),
1328–1334.
https://doi.org/10.1176/appi.ajp.2014.13121605
Citazione non strutturata
Kemp A.H., Quintana D.S., Felmingham K.L., Matthews S., & Jelinek H.F. (2012). Depression, comorbid anxiety disorders, and
heart rate variability in physically healthy, unmedicated patients: implications for cardiovascular risk. PLoS One, 7(2),
e30777.
https://doi.org/10.1371/journal.pone.0030777
Citazione non strutturata
Kemp A.H., Quintana D.S., Gray M.A., Felmingham K.L., Brown K., & Gatt J.M. (2010). Impact of depression and antidepressant
treatment on heart rate variability: a review and meta-analysis. Biological Psychiatry, 67(11), 1067–1074.
https://doi.org/10.1016/j.biopsych.2009.12.012
Citazione non strutturata
Kloter E., Barrueto K., Klein S.D., Scholkmann F., & Wolf U. (2018). Heart Rate Variability as a Prognostic Factor for Cancer
Survival - A Systematic Review. Frontiers in Physiology, 9, 623.
https://doi.org/10.3389/fphys.2018.00623
Citazione non strutturata
Krypotos A.M., Jahfari S., van Ast V.A., Kindt M., & Forstmann B.U. (2011). Individual Differences in Heart Rate Variability
Predict the Degree of Slowing during Response Inhibition and Initiation in the Presence of Emotional Stimuli. Frontiers in
Psychology, 2, 278.
https://doi.org/10.3389/fpsyg.2011.00278
Citazione non strutturata
Lu W., Wang Z., & Liu Y. (2013). A pilot study on changes of cardiac vagal tone in individuals with low trait positive affect:
the effect of positive psychotherapy. International Journal of Psychophysiology, 88(2), 213–217.
https://doi.org/10.1016/j.ijpsycho.2013.04.012
Citazione non strutturata
Mastitskaya S., Thompson N., & Holder D. (2021). Selective Vagus Nerve Stimulation as a Therapeutic Approach for the Treatment
of ARDS: A Rationale for Neuro-Immunomodulation in COVID-19 Disease. Frontiers in neuroscience, 15, 667036.
https://doi.org/10.3389/fnins.2021.667036
Citazione non strutturata
Reyes del Paso G.A., Langewitz W., Mulder L.J., van Roon A., & Duschek S. (2013). The utility of low frequency heart rate
variability as an index of sympathetic cardiac tone: a review with emphasis on a reanalysis of previous studies. Psychophysiology,
50(5), 477–487.
https://doi.org/10.1111/psyp.12027
Citazione non strutturata
Sakaki M., Yoo H.J., Nga L., Lee T.H., Thayer J.F., & Mather M. (2016). Heart rate variability is associated with amygdala
functional connectivity with MPFC across younger and older adults. Neuroimage, 139, 44–52.
https://doi.org/10.1016/j.neuroimage.2016.05.076
Citazione non strutturata
Smith R., Thayer J.F., Khalsa S.S., & Lane R.D. (2017). The hierarchical basis of neurovisceral integration. Neuroscience
and Biobehavioral Reviews, 75, 274–296.
https://doi.org/10.1016/j.neubiorev.2017.02.003
Citazione non strutturata
Sripada C., Angstadt M., Kessler D., Phan K.L., Liberzon I., Evans G.W., Welsh R.C., Kim P., & Swain J.E. (2014). Volitional
regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks.
Neuroimage, 89, 110–121.
https://doi.org/10.1016/j.neuroimage.2013.11.006
Citazione non strutturata
Sterling P. (2012). Allostasis: a model of predictive regulation. Physiology & Behavior, 106(1), 5–15.
https://doi.org/10.1016/j.physbeh.2011.06.004
Citazione non strutturata
Thayer J.F., Ahs F., Fredrikson M., Sollers J.J., 3rd, & Wager T.D. (2012). A meta-analysis of heart rate variability and
neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neuroscience & Biobehavioral
Reviews, 36(2), 747–756.
https://doi.org/10.1016/j.neubiorev.2011.11.009
Citazione non strutturata
Thayer J.F., & Sternberg E. (2006). Beyond heart rate variability: vagal regulation of allostatic systems. Annals of the New
York Academy of Sciences, 1088, 361–372.
https://doi.org/10.1196/annals.1366.014
Citazione non strutturata
Tracey K.J. (2009). Reflex control of immunity. Nature Reviews. Immunology, 9(6), 418–428.
https://doi.org/10.1038/nri2566
Citazione non strutturata
Verkuil B., Brosschot J.F., & Thayer J.F. (2014). Cardiac reactivity to and recovery from acute stress: temporal associations
with implicit anxiety. International Journal of Psychophysiology, 92(2), 85–91.
https://doi.org/10.1016/j.ijpsycho.2014.03.002
Citazione non strutturata
Vogt B. (2009). Cingulate neurobiology and disease. Oxford: Oxford University Press.