I METADATI DI QUESTO DOI SONO STATI AGGIORNATI IL: 2024-01-10 23:00
Titolo completo
ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT
Editore
FrancoAngeli
ISSN
2280-7659 (Rivista Stampata)
2280-7667 (Rivista Online)
Numero del fascicolo
1
Designazione del fascicolo
1-2
Data del fascicolo (YYYY/MM)
2017/02
Titolo completo
Development of policy metrics for circularity assessment in building assemblies
Di (autore)
Prima Pagina
57
Ultima Pagina
84
Lingua del testo
Inglese
Data di publicazione
2017/02
Copyright
2017 FrancoAngeli srl
Introduzione o prefazione
Design for material recovery is drawing increased interest as a strategy for eliminating landfill waste outputs from building end-of-life operations. Yet, a lack of comprehensive performance evaluation methods in this field is preventing policymakers and stakeholders from setting verifiable recovery goals for new construction and retrofitting. Responding to this problem, the following paper proposes an evaluation framework and a material recovery potential index (MRPI) for building assemblies. The system evaluates recovery potential at both the material and assembly levels through a series of categories and subcategories. Assessment approaches from other design and engineering disciplines are introduced and selectively adapted to reflect the unique recovery challenges that are characteristic of buildings and infrastructure. A weighting strategy is developed using the analytic hierarchy process (AHP) method and the entire system is successfully tested using output validation. Lastly, the MRPI is applied in a comparative recovery potential study of 12 typical envelope assemblies. Results indicate a strong correlation between MRPI scores and other environmental indicators such as embodied energy levels and global warming potential values.
Citazione non strutturata
NEWMOA. Construction & Demolition Waste Management in the Northeast in 2006; Northeast Waste Management Official’s Association: Boston, MA, 2009; p 65. -- Available from: http://www.newmoa.org/solidwaste/CDReport2006DataFinalJune302009.pdf, p. 8
Citazione non strutturata
Eurostat. Reuse, recycling and recovery of ELVs, by country and year, in percent (%). 2013. -- Available from: http://epp.eurostat.ec.europa.eu/portal/page/portal/waste/key_waste_streams/end_of_life_vehicles_elvs.
Citazione non strutturata
Waste Electrical and Electronic Equipment European Union Directive 2012/19/EU, (2012).
Citazione non strutturata
End of Life Vehicles (ELV) European Union Directive 2000/53/EC, (2000).
Citazione non strutturata
ISO, the International Organization for Standardization, 2008. Earth-moving machinery – Recyclability and recoverability – Terminology and calculation method, Standard 16714:2008.
Citazione non strutturata
ISO, the International Organization for Standardization, 2002. Road vehicles – Recyclability and recoverability – Calculation method, Standard 22628:2002.
Citazione non strutturata
ISO, the International Organization for Standardization, 2010. Recyclability and Recoverability of Rolling Stock, Committee ISO/TC 269/AG 6.
Citazione non strutturata
Kroll E., Carver B.S. (1999). Disassembly analysis through time estimation and other metrics. Robotics and Computer-Integrated
Manufacturing 15 (3): 191-200.
https://doi.org/10.1016/S0736-5845(99)00026-5
Citazione non strutturata
Germani M., Mandolini M., Marconi M., Rossi M. (2014). An Approach to Analytically Evaluate the Product Disassemblability
during the Design Process. Procedia CIRP, 21: 336-341.
https://doi.org/10.1016/j.procir.2014.03.153
Citazione non strutturata
Dahmus J.B., Gutowski T.G. (2006). Material Recycling at Product End-of-Life. In Electronics and the Environment. Proceedings
of the 2006 IEEE International Symposium on, pp. 206-211. IEEE.
https://doi.org/10.1109/ISEE.2006.1650062
Citazione non strutturata
Gungor A., Gupta S.M. (1997). An evaluation methodology for disassembly processes. Computers & Industrial Engineering, 33
(1): 329-332.
https://doi.org/10.1016/S0360-8352(97)00104-6
Citazione non strutturata
Giudice F., Kassem M. (2009). End-of-life impact reduction through analysis and redistribution of disassembly depth: A case
study in electronic device redesign. Computers & Industrial Engineering, 57 (3): 677-690.
https://doi.org/10.1016/j.cie.2009.01.007
Citazione non strutturata
Villalba G., Segarra M., Fernandez A.I., Chimenos J.M., Espiell F. (2002). A proposal for quantifying the recyclability of
materials. Resources, Conservation and Recycling, 37, 1: 39-53.
https://doi.org/10.1016/S0921-3449(02)00056-3
Citazione non strutturata
Lee Hui Mien, Wen Feng Lu, Bin Song (2014). A framework for assessing product End-Of-Life performance: reviewing the state
of the art and proposing an innovative approach using an End-of-Life Index. Journal of Cleaner Production, 66: 355-371.
https://doi.org/10.1016/j.jclepro.2013.11.001
Citazione non strutturata
Shami M. (2006). A comprehensive review of building deconstruction and salvage: deconstruction benefits and hurdles. International
Journal of Environmental Technology and Management, 6, 3-4: 236-291.
https://doi.org/10.1504/IJETM.2006.008998
Citazione non strutturata
Muthu S.S., Yi Li, Jun-Yan Hu and Pik-Yin Mok (2012). Recyclability Potential Index (RPI): The concept and quantification
of RPI for textile fibres. Ecological Indicators, 18: 58-62.
https://doi.org/10.1016/j.ecolind.2011.10.003
Citazione non strutturata
Berge B. (2009). The Ecology of Building Materials. Routledge, London.
https://doi.org/10.4324/9780080949741
Citazione non strutturata
American Society for Testing and Materials International, ASTM D6886 – 03: Standard Test Method for Speciation of the Volatile Organic Compounds (VOCs) in Low VOC Content Waterborne Air-Dry Coatings by Gas Chromatograpy. -- http://www.astm.org/DATABASE.CART/HISTORICAL/D6886-03.htm.
Citazione non strutturata
Kaplan S.A. (1986). Development of material safety data sheets. In: Abstracts of Papers of the American Chemical Society, 191, pp. 11-CHAS. 1155 16TH ST, NW, Washington, DC 20036: American Chemical Society.
Citazione non strutturata
Organization for Economic Co-operation and Development, OECD Guidelines for the Testing of Chemicals, Section 3, Test No. 301: Ready Biodegradability. -- http://www.oecd-ilibrary.org/environment/test-no-301-ready-biodegradability_9789264070349-en.
Citazione non strutturata
United States Geological Survey, Mineral Commodity Summaries – Cement, 2015. -- http://minerals.usgs.gov/minerals/pubs/commodity/cement/.
Citazione non strutturata
Torgal F.P., Said J. (2011). Eco-efficient construction and building materials. Springer Science & Business Media.
https://doi.org/10.1007/978-0-85729-892-8_8
Citazione non strutturata
Kondo Y., Kenji D., Yu-Ichiro Hayashi and Fumio Obata (2003). Reversibility and disassembly time of part connection. Resources,
Conservation and Recycling, 38 (3): 175-184.
https://doi.org/10.1016/S0921-3449(02)00153-2
Citazione non strutturata
Martin B. (1977). Joints in buildings. G. Godwin.
Citazione non strutturata
Brand S. (1995). How buildings learn: What happens after they’re built. Penguin.
Citazione non strutturata
Seiders D., Ahluwalia G., Melman S., Quint R., Chaluvadi A., Liang M., Silverberg A., Bechler C., Jackson J. (2007). Study of life expectancy of home components. National Association oHome Builders, Bank of America Home Equity.
Citazione non strutturata
Staib G., Dörrhöfer A., Rosenthal M. (2008), Components and Systems: Modular Construction–Design, Structure, New Technologies.
Walter de Gruyter.
https://doi.org/10.11129/detail.9783034615662
Citazione non strutturata
Mayer M. (2014), Design Metrics for Disassembly and Material Recovery, doctoral thesis, Harvard University.
Citazione non strutturata
Ishizaka A., Nemery P. (2013). Multi-criteria decision analysis: methods and software. John Wiley & Sons.
https://doi.org/10.1002/9781118644898
Citazione non strutturata
Wong J. K.W., Heng Li (2008). Application of the analytic hierarchy process (AHP) in multi-criteria analysis of the selection
of intelligent building systems. Building and Environment, 43 (1): 108-125.
https://doi.org/10.1016/j.buildenv.2006.11.019
Citazione non strutturata
Kuzman M.K., Grošelj P., Ayrilmis N., Zbašnik-Senegačnik M. (2013). Comparison of passive house construction types using analytic
hierarchy process. Energy and Buildings 64: 258-263.
https://doi.org/10.1016/j.enbuild.2013.05.020
Citazione non strutturata
Goepel K.D. (2013). Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in
corporate enterprises–a new AHP excel template with multiple inputs. In Proceedings of the International Symposium on the
Analytic Hierarchy Process, Kuala Lumpur, Malaysia.
https://doi.org/10.13033/isahp.y2013.047
Citazione non strutturata
Addiscott T., Smith J., Bradbury N. (1995). Critical evaluation of models and their parameters. Journal of Environmental Quality,
24, 5: 803-807.
https://doi.org/10.2134/jeq1995.00472425002400050002x
Citazione non strutturata
Halberg N. (1999). Indicators of resource use and environmental impact for use in a decision aid for Danish livestock farmers.
Agriculture, Ecosystems & Environment, 76, 1: 17-30.
https://doi.org/10.1016/S0167-8809(99)00055-9
Citazione non strutturata
Bockstaller C., Girardin Ph. (2003), How to validate environmental indicators. Agricultural systems, 76, 2: 639-653.
https://doi.org/10.1016/S0308-521X(02)00053-7
Citazione non strutturata
Girardin P., Bockstaller C., Van der Werf H. (1999). Indicators: tools to evaluate the environmental impacts of farming systems.
Journal of Sustainable Agriculture, 13 (4): 5-21.
https://doi.org/10.1300/J064v13n04_03
Citazione non strutturata
U.S. Census Bureau, Value of Construction Put in Place, July 2015. -- Available from: https://www.census.gov/construction/c30/c30index.html.
Citazione non strutturata
Means R.S. (2014). Means Assemblies Cost Data 2014 Book.