Full Title
HISTORY OF ECONOMIC THOUGHT AND POLICY
Publisher
FrancoAngeli
ISSN
2240-9971 (Printed Journal)
2280-188X (Online Journal)
Journal Issue Number
2
Journal Issue Designation
2
Journal Issue Date
2023
Full Title
How the Cryptocurrency Discourse is Changing: A Textual Analysis
By (author)
First Page
31
Last Page
52
Language of text
English
Publication Date
2024/01
Copyright
2023 FrancoAngeli srl
Main description
The paper aims to retrace the academic discourse on cryptocurrencies from 2015 to 2022 by treating it as a lexical unicum that evolves over time. The purpose is to understand what themes have emerged and how they have changed the discourse on cryptocurrencies. We used a three-step methodology. The first consists of text mining that allows us to create, from 1057 academic articles on the subject, the matrix containing the frequencies of words/n-grams. In a second step, lexical analysis is enriched by correspondence analysis, a useful tool to measure the "distance" and evolution of academic discourse and to identify significant content discontinuity. Finally, the causal analysis addresses the ultimate goal of understanding whether it is possible to define future developments in the cryptocurrency discourse, whether it will absorb instances from outside or remain focused on the prevailing themes to date. The identification and application of a method to analyze the evolution of the cryptocurrency discourse allowed us to distinguish at least two distinct phases characterized by specific content and cryptocurrencies.
Unstructured Citation
Abdi H., Williams L.J. (2010). Principal Component Analysis, Wiley Int. Rev. Comput. Stat., 2: 433-459.
https://doi.org/10.1002/wics.101
Unstructured Citation
Ahn Y., Kim D. (2021). Emotional trading in the cryptocurrency market, Financ. Res. Lett., 42, 101912.
https://doi.org/10.1016/j.frl.2020.101912
Unstructured Citation
Akyildirim E., Aysan A.F., Cepni O., Darendeli S.P.C. (2021). Do investor sentiments drive cryptocurrency prices?, Econ. Lett.
206, 109980.
https://doi.org/10.1016/j.econlet.2021.109980
Unstructured Citation
Atkinson J., Escudero A. (2022). Evolutionary natural-language coreference resolution for sentiment analysis, Intern. Journ,
Inform. Mang. Data Ins., 2, 100115.
https://doi.org/10.1016/j.jjimei.2022.100115
Unstructured Citation
Ba C.T., Zignani M., Gaito S. (2022). The role of cryptocurrency in the dynamics of blockchain-based social networks: The
case of Steemit, PLoS ONE, 17(6), e0267612.
https://doi.org/10.1371/journal.pone.0267612
Unstructured Citation
Bariviera A.F., Merediz-Solà I. (2021). Where do we stand in cryptocurrencies economic Research? A survey based on hybrid
analysis, J. Econ. Survey, 35(2): 377-407.
https://doi.org/10.1111/joes.12412
Unstructured Citation
Beh E.J., Lombardo R. (2014). Correspondence Analysis. Theory, Practice and New Strategies. Wiley, Chichester.
https://doi.org/10.1002/9781118762875
Unstructured Citation
Bhatt A., Joshipura M., Joshipura N. (2022). Decoding the trinity of Fintech, digitalization and financial services: An integrated
bibliometric analysis and thematic literature review approach, Cog. Econ. Finance, 10, 2114160.
https://doi.org/10.1080/23322039.2022.2114160
Unstructured Citation
Bouteska A., Mefteh-Wali S., Dang T. (2022). Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19
pandemic, Techn. Forec. Soc. Change, 184, 121999.
https://doi.org/10.1016/j.techfore.2022.121999
Unstructured Citation
Chen M.A., Wu D., Yang B. (2019). How Valuable Is FinTech Innovation?. Rev. Financ. Stud., 32(5).
https://doi.org/10.1093/rfs/hhy130
Unstructured Citation
Coulter K.A. (2022). The impact of news media on Bitcoin prices: modelling data driven discourses in the crypto-economy with
natural language processing, Royal Soc. Open Sci., 9, 220276.
https://doi.org/10.1098/rsos.220276
Unstructured Citation
Dadar P. (2018). Decyphering cryptocurrencies: Sentiments and prices. SCSUG Paper.
Unstructured Citation
Egami N., Fong C.J., Grimmer J., Roberts M.E., Stewart B.M. (2018). How to Make Causal Inferences Using Texts, arXiv, 1802.02163v1.
Unstructured Citation
Elsayed A.H., Gozgor G., Yarovaya L. (2022). Volatility and return connectedness of cryptocurrency, gold, and uncertainty:
Evidence from the cryptocurrency uncertainty indices, Financ Res. Lett., 47, 102732.
https://doi.org/10.1016/j.frl.2022.102732
Unstructured Citation
Garcia‑Corral F.J., Cordero‑Garcia J.A., de Pablo‑Valenciano J., Uribe‑Toril J. (2022). A bibliometric review of cryptocurrencies:
how have they grown?, Financ. Innov., 8(2).
https://doi.org/10.1186/s40854-021-00306-5
Unstructured Citation
García-Medina A., Hernández J.B. (2020). Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of
Turbulence, Entropy, 22(7), 760.
https://doi.org/10.3390/e22070760
Unstructured Citation
Garriga M., Dalla Palma S., Arias M., De Renzis A., Pareschi R., Tamburri D.A (2020). Blockchain and cryptocurrencies: A classification
and comparison of architecture drivers, Concurrency and Computation, 33(8).
https://doi.org/10.1002/cpe.5992
Unstructured Citation
Granger C.W.J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica, 37,
424-438.
https://doi.org/10.2307/1912791
Unstructured Citation
Greenacre M. (2007). Correspondence Analysis in Practice, Chapman & Hall, Boca Raton.
https://doi.org/10.1201/9781420011234
Unstructured Citation
Grimmer J., Stewart B. (2013). Text ad Data: The promise and Pitfalls of Automatic Content Analysis Methods for Political
Texts, Political Analysis, 21: 267-97.
https://doi.org/10.1093/pan/mps028
Unstructured Citation
Guerrero Cusumano J.L. (2017). A Detection Mechanism with Text Mining Cross Correlation Approach, IEEE International Conference on Big Data Boston.
Unstructured Citation
Guo X., Donev P. (2020). Bibliometrics and Network Analysis of Cryptocurrency Research, J Syst Sci Complex, 33: 1933-1958.
https://doi.org/10.1007/s11424-020-9094-z
Unstructured Citation
Gupta A., Dengre V., Kheruwala H:A., Shah M. (2020). Comprehensive review of text‑mining applications in finance, Financial
Innovation, 6: 39.
https://doi.org/10.1186/s40854-020-00205-1
Unstructured Citation
Hamilton J.D. (1994). Time Series Analysis, Princeton University Press, Princeton. Hassani H., Huang X., & Ghodsi M. (2018).
Big Data and Causality. Annals Data Science, 5: 133-156.
https://doi.org/10.1007/s40745-017-0122-3
Unstructured Citation
Hill T., Lewicki P. (2006). Statistics. Methods and Applications, StatSoft, Tulsa. Hoover K.D. (2001). Causality in Macroeconomics,
Cambridge University Press, Cambridge.
https://doi.org/10.1016/B978-0-323-03707-5.50024-3
Unstructured Citation
Jaquart P., Kopke S., Weinhardt C. (2022). Machine learning for cryptocurrency market prediction and trading, J. Financ. Data
Sci., 8: 331-352.
https://doi.org/10.1016/j.jfds.2022.12.001
Unstructured Citation
Kim Y.B., Lee J., Park N., Choo J., Kim J-H., Kim (2017). When Bitcoin encounters information in an online forum: Using text
mining to analyse user opinions and predict value fluctuation. PLoS ONE, 12(5), e0177630.
https://doi.org/10.1371/journal.pone.0177630
Unstructured Citation
Kraaijeveld O., De Smedt J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices,
J. Int. Financ. Mark. Inst. Money, 65, 101188 v.
https://doi.org/10.1016/j.intfin.2020.101188
Unstructured Citation
Kufenko V., Geiger N. (2016). Business cycles in the economy and in economics: an econometric analysis, Scientometrics, 107:
43-69.
https://doi.org/10.1007/s11192-016-1866-9
Unstructured Citation
Kwapień J., Wątorek M., Drożdż S. (2021). Cryptocurrency Market Consolidation in 2020-2021, Entropy, 23(12), 1674.
https://doi.org/10.3390/e23121674
Unstructured Citation
Laskowski M., Kim H.M. (2016). Rapid Prototyping of a Text Mining Application for Cryptocurrency Market Intelligence, arXiv,
1611.00315v1.
https://doi.org/10.2139/ssrn.2798486