View full metadata

DOI data

10.3280/SPE2023-002002

Serial Article

Cite as

Journal Data
Journal Issue Data
Serial Article Data
Reference list of 10.3280/SPE2023-002002

Unstructured Citation

Abdi H., Williams L.J. (2010). Principal Component Analysis, Wiley Int. Rev. Comput. Stat., 2: 433-459.

https://doi.org/10.1002/wics.101


Unstructured Citation

Ahn Y., Kim D. (2021). Emotional trading in the cryptocurrency market, Financ. Res. Lett., 42, 101912.

https://doi.org/10.1016/j.frl.2020.101912


Unstructured Citation

Akyildirim E., Aysan A.F., Cepni O., Darendeli S.P.C. (2021). Do investor sentiments drive cryptocurrency prices?, Econ. Lett. 206, 109980.

https://doi.org/10.1016/j.econlet.2021.109980


Unstructured Citation

Atkinson J., Escudero A. (2022). Evolutionary natural-language coreference resolution for sentiment analysis, Intern. Journ, Inform. Mang. Data Ins., 2, 100115.

https://doi.org/10.1016/j.jjimei.2022.100115


Unstructured Citation

Ba C.T., Zignani M., Gaito S. (2022). The role of cryptocurrency in the dynamics of blockchain-based social networks: The case of Steemit, PLoS ONE, 17(6), e0267612.

https://doi.org/10.1371/journal.pone.0267612


Unstructured Citation

Bariviera A.F., Merediz-Solà I. (2021). Where do we stand in cryptocurrencies economic Research? A survey based on hybrid analysis, J. Econ. Survey, 35(2): 377-407.

https://doi.org/10.1111/joes.12412


Unstructured Citation

Beh E.J., Lombardo R. (2014). Correspondence Analysis. Theory, Practice and New Strategies. Wiley, Chichester.

https://doi.org/10.1002/9781118762875


Unstructured Citation

Bhatt A., Joshipura M., Joshipura N. (2022). Decoding the trinity of Fintech, digitalization and financial services: An integrated bibliometric analysis and thematic literature review approach, Cog. Econ. Finance, 10, 2114160.

https://doi.org/10.1080/23322039.2022.2114160


Unstructured Citation

Bouteska A., Mefteh-Wali S., Dang T. (2022). Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic, Techn. Forec. Soc. Change, 184, 121999.

https://doi.org/10.1016/j.techfore.2022.121999


Unstructured Citation

Chen M.A., Wu D., Yang B. (2019). How Valuable Is FinTech Innovation?. Rev. Financ. Stud., 32(5).

https://doi.org/10.1093/rfs/hhy130


Unstructured Citation

Coulter K.A. (2022). The impact of news media on Bitcoin prices: modelling data driven discourses in the crypto-economy with natural language processing, Royal Soc. Open Sci., 9, 220276.

https://doi.org/10.1098/rsos.220276


Unstructured Citation

Dadar P. (2018). Decyphering cryptocurrencies: Sentiments and prices. SCSUG Paper.


Unstructured Citation

Egami N., Fong C.J., Grimmer J., Roberts M.E., Stewart B.M. (2018). How to Make Causal Inferences Using Texts, arXiv, 1802.02163v1.


Unstructured Citation

Elsayed A.H., Gozgor G., Yarovaya L. (2022). Volatility and return connectedness of cryptocurrency, gold, and uncertainty: Evidence from the cryptocurrency uncertainty indices, Financ Res. Lett., 47, 102732.

https://doi.org/10.1016/j.frl.2022.102732


Unstructured Citation

Garcia‑Corral F.J., Cordero‑Garcia J.A., de Pablo‑Valenciano J., Uribe‑Toril J. (2022). A bibliometric review of cryptocurrencies: how have they grown?, Financ. Innov., 8(2).

https://doi.org/10.1186/s40854-021-00306-5


Unstructured Citation

García-Medina A., Hernández J.B. (2020). Network Analysis of Multivariate Transfer Entropy of Cryptocurrencies in Times of Turbulence, Entropy, 22(7), 760.

https://doi.org/10.3390/e22070760


Unstructured Citation

Garriga M., Dalla Palma S., Arias M., De Renzis A., Pareschi R., Tamburri D.A (2020). Blockchain and cryptocurrencies: A classification and comparison of architecture drivers, Concurrency and Computation, 33(8).

https://doi.org/10.1002/cpe.5992


Unstructured Citation

Granger C.W.J. (1969). Investigating Causal Relations by Econometric Models and Cross-spectral Methods, Econometrica, 37, 424-438.

https://doi.org/10.2307/1912791


Unstructured Citation

Greenacre M. (2007). Correspondence Analysis in Practice, Chapman & Hall, Boca Raton.

https://doi.org/10.1201/9781420011234


Unstructured Citation

Grimmer J., Stewart B. (2013). Text ad Data: The promise and Pitfalls of Automatic Content Analysis Methods for Political Texts, Political Analysis, 21: 267-97.

https://doi.org/10.1093/pan/mps028


Unstructured Citation

Guerrero Cusumano J.L. (2017). A Detection Mechanism with Text Mining Cross Correlation Approach, IEEE International Conference on Big Data Boston.


Unstructured Citation

Guo X., Donev P. (2020). Bibliometrics and Network Analysis of Cryptocurrency Research, J Syst Sci Complex, 33: 1933-1958.

https://doi.org/10.1007/s11424-020-9094-z


Unstructured Citation

Gupta A., Dengre V., Kheruwala H:A., Shah M. (2020). Comprehensive review of text‑mining applications in finance, Financial Innovation, 6: 39.

https://doi.org/10.1186/s40854-020-00205-1


Unstructured Citation

Hamilton J.D. (1994). Time Series Analysis, Princeton University Press, Princeton. Hassani H., Huang X., & Ghodsi M. (2018). Big Data and Causality. Annals Data Science, 5: 133-156.

https://doi.org/10.1007/s40745-017-0122-3


Unstructured Citation

Hill T., Lewicki P. (2006). Statistics. Methods and Applications, StatSoft, Tulsa. Hoover K.D. (2001). Causality in Macroeconomics, Cambridge University Press, Cambridge.

https://doi.org/10.1016/B978-0-323-03707-5.50024-3


Unstructured Citation

Jaquart P., Kopke S., Weinhardt C. (2022). Machine learning for cryptocurrency market prediction and trading, J. Financ. Data Sci., 8: 331-352.

https://doi.org/10.1016/j.jfds.2022.12.001


Unstructured Citation

Kim Y.B., Lee J., Park N., Choo J., Kim J-H., Kim (2017). When Bitcoin encounters information in an online forum: Using text mining to analyse user opinions and predict value fluctuation. PLoS ONE, 12(5), e0177630.

https://doi.org/10.1371/journal.pone.0177630


Unstructured Citation

Kraaijeveld O., De Smedt J. (2020). The predictive power of public Twitter sentiment for forecasting cryptocurrency prices, J. Int. Financ. Mark. Inst. Money, 65, 101188 v.

https://doi.org/10.1016/j.intfin.2020.101188


Unstructured Citation

Kufenko V., Geiger N. (2016). Business cycles in the economy and in economics: an econometric analysis, Scientometrics, 107: 43-69.

https://doi.org/10.1007/s11192-016-1866-9


Unstructured Citation

Kwapień J., Wątorek M., Drożdż S. (2021). Cryptocurrency Market Consolidation in 2020-2021, Entropy, 23(12), 1674.

https://doi.org/10.3390/e23121674


Unstructured Citation

Laskowski M., Kim H.M. (2016). Rapid Prototyping of a Text Mining Application for Cryptocurrency Market Intelligence, arXiv, 1611.00315v1.

https://doi.org/10.2139/ssrn.2798486